Skilltypescript
Worker Benchmarks Skill
Worker-Agent integration for intelligent task dispatch and performance tracking
SKILL.md
---
name: worker-integration
description: Worker-Agent integration for intelligent task dispatch and performance tracking
version: 1.0.0
invocable: true
author: agentic-flow
capabilities:
- agent_selection
- performance_tracking
- memory_coordination
- self_learning
---
# Worker-Agent Integration Skill
Intelligent coordination between background workers and specialized agents.
## Quick Start
```bash
# View agent recommendations for a trigger
npx agentic-flow workers agents ultralearn
npx agentic-flow workers agents optimize
# View performance metrics
npx agentic-flow workers metrics
# View integration stats
npx agentic-flow workers stats --integration
```
## Agent Mappings
Workers automatically dispatch to optimal agents based on trigger type:
| Trigger | Primary Agents | Fallback | Pipeline Phases |
|---------|---------------|----------|-----------------|
| `ultralearn` | researcher, coder | planner | discovery → patterns → vectorization → summary |
| `optimize` | performance-analyzer, coder | researcher | static-analysis → performance → patterns |
| `audit` | security-analyst, tester | reviewer | security → secrets → vulnerability-scan |
| `benchmark` | performance-analyzer | coder, tester | performance → metrics → report |
| `testgaps` | tester | coder | discovery → coverage → gaps |
| `document` | documenter, researcher | coder | api-discovery → patterns → indexing |
| `deepdive` | researcher, security-analyst | coder | call-graph → deps → trace |
| `refactor` | coder, reviewer | researcher | complexity → smells → patterns |
## Performance-Based Selection
The system learns from execution history to improve agent selection:
```typescript
// Agent selection considers:
// 1. Quality score (0-1)
// 2. Success rate
// 3. Average latency
// 4. Execution count
const { agent, confidence, reasoning } = selectBestAgent('optimize');
// agent: "performance-analyzer"
// confidence: 0.87
// reasoning: "Selected based on 45 executions with 94.2% success"
```
## Memory Key Patterns
Workers store results using consistent patterns:
```
{trigger}/{topic}/{phase}
Examples:
- ultralearn/auth-module/analysis
- optimize/database/performance
- audit/payment/vulnerabilities
- benchmark/api/metrics
```
## Benchmark Thresholds
Agents are monitored against performance thresholds:
```json
{
"researcher": {
"p95_latency": "<500ms",
"memory_mb": "<256MB"
},
"coder": {
"p95_latency": "<300ms",
"quality_score": ">0.85"
},
"security-analyst": {
"scan_coverage": ">95%",
"p95_latency": "<1000ms"
}
}
```
## Feedback Loop
Workers provide feedback for continuous improvement:
```typescript
import { workerAgentIntegration } from 'agentic-flow/workers/worker-agent-integration';
// Record execution feedback
workerAgentIntegration.recordFeedback(
'optimize', // trigger
'coder', // agent
true, // success
245, // latency ms
0.92 // quality score
);
// Check compliance
const { compliant, violations } = workerAgentIntegration.checkBenchmarkCompliance('coder');
```
## Integration Statistics
```bash
$ npx agentic-flow workers stats --integration
Worker-Agent Integration Stats
══════════════════════════════
Total Agents: 6
Tracked Agents: 4
Total Feedback: 156
Avg Quality Score: 0.89
Model Cache Stats
─────────────────
Hits: 1,234
Misses: 45
Hit Rate: 96.5%
```
## Configuration
Enable integration features in `.claude/settings.json`:
```json
{
"workers": {
"enabled": true,
"parallel": true,
"memoryDepositEnabled": true,
"agentMappings": {
"ultralearn": ["researcher", "coder"],
"optimize": ["performance-analyzer", "coder"]
}
}
}
```