Cli Rule
```bash torchx run [options] <component> [component_args] ```
CLI Usage
Main Command: torchx run
torchx run [options] <component> [component_args]
Options
| Flag | Description |
|-------------------|------------------------------------------------|
| -s, --scheduler | Scheduler backend (local, docker, kubernetes) |
| --cfg | Scheduler configuration (key=value) |
| -n, --name | Application name |
| --dryrun | Print job definition without submitting |
Examples
# Local execution
torchx run -s local dist.ddp -j 1x4 --script train.py
# Kubernetes with 2 nodes × 4 procs
torchx run -s kubernetes dist.ddp -j 2x4 --script main.py
# Docker execution
torchx run -s docker dist.ddp -j 1x2 --script train.py
# Dryrun (inspect without submitting)
torchx run -s local dist.ddp -j 1x4 --script main.py --dryrun
Other Commands
torchx status <app_id> # Check app status
torchx log <app_id> # View logs
torchx cancel <app_id> # Cancel running app
torchx describe <app_id> # Detailed app info
torchx list # List apps
Component Resolution
Components can be specified as:
# Built-in component
torchx run dist.ddp ...
# File-based component
torchx run ~/components.py:my_component ...
# Module path
torchx run my_package.components:train ...
Common Component Parameters
| Param | Description |
|---------|--------------------------------------------------|
| j | Job topology: {nnodes}x{nproc_per_node} |
| m | Python module to run |
| h | Named resource (gpu type, instance type) |
| env | Environment variables |
| image | Container image |
| script| Script or binary to run |